
IJSRST151262 | Received: 16 May 2015 | Accepted:  11 June 2015 | May-June-2015 [(1)2: 114-121] 

                                

© 2015 IJSRST | Volume 1 | Issue 2 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X 
Themed Section:  Science and Technology 

  

 114 

 

Parameters Analysis Characterizing the EFG Meshfree Metod for Two-

Dimensional Elastic Beam Problem 
Prof. Sanjaykumar D. Ambaliya

*1
, Prof. Ketan D. Panchal

2
, Prof. Hemal N. Lakdawala

3 

1
Department of Mechanical Engineering, Government Engineering College, Surat, Gujarat, India 

2,3
Department of Mechanical Engineering, Government Engineering College, Valsad, Gujarat 

  

ABSTRACT 
 

The Finite Element Method (FEM) is well established for modelling complex problems for engineering problems in 

various fields. However, the difficulty of meshing and remeshing of complex structural elements in several classes 

of problems is the main drawback that FEM possess. To prevent this drawback, Mesh Free numerical techniques 

have been developed in such a way that the mesh is not more necessary to discretize the problem, and the trial 

functions are constructed entirely in terms of a set of nodes without the necessity of element descretization for the 

construction of the equations. Element Free Galerkin method (EFG) is one of the most interesting meshless methods 

which is based on global weak form of governing differential equation and employs Moving Least Square (MLS) 

approximants to construct shape functions. To implement this technique, it is necessary to characterize the 

significant parameters like, order of monomial basis function, weight function selection in MLS approximants, the 

size of influence domain, uniform and non-uniform node distribution, number of Gauss points in integration cells. In 

this paper, the EFG method has been extended to solve elasto-static beam problem in plane stress cases for node 

distribution scheme, number of Gauss points in integration cells. For implementation and solution, a MATLAB 

program has been developed to verify the accuracy of the proposed meshless method and results are compared with 

exact analytical solutions. 

Keywords: EFG, MLS Shape Functions, Weight Functions, Meshfree, Matlab, Monomial Basis, Size Of Influence 

Domain. 

 

I. INTRODUCTION 

 

The Finite Element Method (FEM) has been well 

established and used widely in many branches of 

engineering. However, it still has some shortcomings. 

The reliance of the FEM method on a mesh leads to 

complications for certain classes of problems due to 

considerable loss in accuracy arises due to element 

distortion. The modelling of large deformation processes, 

examining the growth of cracks with arbitrary and 

complex paths, and the simulations of phase 

transformations is also difficult with FEM. Many 

theories of meshless methods were proposed to reduce 

some of the shortcomings of FEM, such as EFG, MLPG, 

and PIM, as discussed by Liu [1].  

 

In a meshless method, unlike FEM, a predefined mesh is 

not necessary, at least in field variables interpolation. In 

recent years, meshless methods have been developed as 

alternative numerical approaches in efforts to eliminate 

known drawbacks of the finite element method (FEM). 

The nature of the various approximation functions 

employed by meshless methods allows the descretization 

or redescretization of problem domains by simply 

adding or deleting nodes where desired. Nodal 

connectivity to form an element as in FEM method is 

not needed, only nodal coordinates and their domain of 

influence (dmax) are necessary to discretize the problem 

domain. Meshless methods may also reduce other 

problems associated with the FEM, such as solution 

degradation due to locking and severe element distortion 

[1]. There are several meshless methods under current 

development, including the Element-Free Galerkin (EFG) 

method proposed by Belytschko, the Reproducing 

Kernel Particle Method (RKPM) proposed by Liu, 

Smooth Particle Hydrodynamics (SPH) method 
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proposed by Gingold and Monaghan, Meshless Local 

Petrov-Galerkin (MLPG) method proposed by Atluri, 

and some other methods [3, 5]. The well-establish EFG 

method use shape functions which are derived from 

moving least square (MLS) approximation. In 1981, 

Lancaster and Salkauskas formulated the Moving Least 

square approach [Lancaster, 1981]. Nayroles et al (1992) 

first used it for meshfree approximation and the idea was 

further formulated into EFGM framework by Belytschko 

et al (1994). MLS involves the assumption of the field 

variable as a summation of series of monomials. The 

coefficients of the monomials are the unknowns and are 

calculated such that the squared sum of errors in the 

domain of a point is minimal. Once the approximation at 

a point is over, the MLS is „moved‟ to another point. 

 

This paper characterize the significant selectable 

parameters like, node distribution scheme, and number 

of points in gauss integration for EFG method by the 

results obtained with the simulation of Timoshenko‟s 

beam through graphical output of the displacement 

fields and of normal and shear stress fields. 

  

II. METHODS AND MATERIAL 
 

2.1 System of Equation: 

 

Consider a displacement function u(x) of a field variable 

defined on the domain Ω, the MLS approximant û (x) of 

the function u(x) can be represented as, 

 

 
 

Where, P
T
 (x) is monomial basis functions of order m 

and a(x) are vector coefficients. 

 

For 2-D problems, 

 

P
T
(x) = [1, x, y]  

Linear, m=3 and 

0 1 2( ) [ ( ) ( ) ( ) ,... ( )]T

ma x a x a x a x a x
 

The unknown parameters a(x) at any given point are 

determined by minimizing the difference between the 

local approximation at that point and the nodal 

parameters ui. Let the nodes whose supports include x be 

given local node numbers 1 to n. In order to determine 

the unknown coefficients a, a functional J is constructed. 

It sum up the weighted quadratic error for all nodes 

inside the support domain as 

 
 

Where n is the number of nodes in the neighbourhood of 

x for which the weight function, W(x — xi) ≠ 0, and ui 

refers to the nodal parameter of u at x = xi. 

 

The weights functions like cubic weight function, 

quartic weight, exponential weight etc, perform two 

actions, one as a medium of imparting smoothness or 

desired continuity to the approximation and other one, 

more important, is the establishment of the local nature 

of the approximation. The polynomial basis and the 

weight function together cast a major influence on the 

performance of the MLS method. 

 

We want to minimize this functional, so we differentiate 

with respect to the unknown vector a(x), containing the 

coefficient, 

J

a




= 0 

 

                                    
 

Which results in the following compact matrix form as,  

 

( ) ( ) ( )A x a x B x u
       

              
1( ) ( ) ( )a x A x B x u

       
Where, 

                                      
1 1 1

1

( ) ( ) ( )
n

T

I

A w x x P x P x


 
                  

             1 1 2( ) [ ( ) ( ), ( ),... ( ) ( )n nB x w x x P x w x x w x x P x   
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                               1, 2[ ,... ]T

nu u u u
      

By inserting this expression, we get a new formulation of the displacement field, 

                               
1

( )

ˆ ( ) ( ) ( ) ( ) ( ) ( )T T

x

u P x a x P x A x B x U x



  =
1

( ) ( )
n

i i

i

u x x u


  

Where, the shape function is defined by, 

                            

1 1

1

( ) ( )( ( ) ( ))
n

T

I I I

i

x P x A x B x p A B  



 
 

2.2 Discrete equations in two-dimensional problems: 

The partial differential equation for two-dimensional problem on the domain    , bounded by   can be written as: 

 

0b in     

Where  is stress tensor, which corresponds to the displacement field u and b is a body force vector. The boundary 

conditions are given as follows: 

n tn t on   
 

uu u on 
 

In which the superposed bar denotes prescribed boundary values, and n is the unit normal to the domain  .The 

Weak form of the equilibrium equation is posed as follows, consider trial functions u(x)ε H
1
 and Lagrange 

multipliers λ ε H
0
, test functions δv(x)ε H

0
, [2] 

 

1 0( ) : ( ) ,
t u u

T T T T T

sv d v bd v td u u d v d v H H        
    

                   
 

Which yield, the following system of linear algebraic equations: 

                                                          
0T

K G U F

G q

     
     

     
 

       Where, 

   

T

IJ I JK B DB d


   

    u
IK t KG N d


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t t t

t
f td td




     
 

u

k kq N ud

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2

1 0

1 0
1
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In which, K is the stiffness matrix, G is the boundary condition matrix, u is the nodal displacements vector, λ is the 

Lagrange multipliers, f is the force vector and q is a boundary condition vector, E  is Young's modulus and v  is 

Poisson‟s ratio, respectively. 

 

3. NUMERICAL EXAMPLES 

 

In this section, a plane stress Timoshenko beam problem is solved using an EFG program written in MATLAB. This 

example serves to illustrate the accuracy of the EFG method by comparing it to the exact solution [2, 4]. 

   

 

Figure 1 : Timoshenko Beam 

 

Consider a beam of length L = 48 unit subjected to parabolic traction at the free end as shown in figure. The beam 

has characteristics height D=12 unit and is considered to be of unit depth and is assumed to be in a state of plane 

stress with P= 1000 unit, v  = 0.3 and E= 3.0 x 107. 

 

The exact analytical solution of Timoshenko beam is given by the following equations [1, 2]. The expressions for 

displacements in x direction, ux, and in y direction, uy, are respectively: 

 
Where P, is the maximum load applied, E is the modulus of elasticity, x and y are the coordinates in x axis and y axis 

for the analyzed nodal point and Im is the inertial moment= D3/12. The stresses are given by: 

 

 
 

 

 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

118 

III. RESULT AND DISCUSSION 

 
5. Numerical Results 

The solutions were obtained using a linear basis function with cubic spline weight function and dmax value of 3.5. 

The stress values along different section are plotted and comparative performance is evaluated for different node 

distribution and gauss integration methods. 

 

Figure 2. Node Distribution 

 

Figure 3. Background Cell 

 

Figure 4. Gauss Points 

 

Figure 5. Stress distribution 
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Figure 6. Displacement for EFG and Exact 

 

 

Figure 7. σx for EFG and Exact 
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Figure 8. σxy for EFG and Exact 

Table 1: Comparative study for 2 D Beam 

Results of stress σ x  at point (24,-6) for 11x7 node distribution 

Gauss point  σ efg σ exact %error 
4x4 937.63 1000 6.237 
5x5 940.6 1000 5.94 
6x6 945.38 1000 5.462 
7x7 950.32 1000 4.968 

Results of displacement uy  at point (48,6) for 4x4 gauss point 

Node 

distribution 

U efg uexact 
%error 

6x4 -0.00802 -0.0089 9.88764 
11x7 -0.00874 -0.0089 1.797753 
20x8 -0.00889 -0.0089 0.11236 
21x10 -0.00889 -0.0089 0.11236 

 
 

IV. CONCLUSION 
 

For 2D Timoshenko beam problem it has been found 

that the accuracy of the EFG is directly proportional to 

the number or nodes. With the increase in the number of 

nodes the accuracy of the EFGM automatically 

increases. Similarly, keeping the number of nodes 

constant, we can increase the quadrature points to 

decrease the error value.  
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